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Origins and Motivation
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Megasystems of Sensors 

Soil Moisture Active Passive (SMAP)

• ~4,000 telemetry channels

• Power, CPU, RAM, Thermal, 
Radiation, counters, switches

• 4B values

• Challenges

• Semi-supervised

• Complexity, diversity

• Scale vs. interpretability
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Current System

Limit-checking and Expert System

• Engineers embed their knowledge 
and create alarms

• Reliance on grey beards

• Custom

• Not complete

• Accuracy

• Appropriate limits change
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Gathering Support

“How” not “why”?

• In favor of

• Harsh environment

• Repairs are difficult

• Risk Aversion

• Generalization

• Data infrastructure

• Against

• Skepticism

• Conservative mindset
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The “Analytics Cloud”

Data Engineering to enable Data Science
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Bigger Picture – The Foundation
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Anomaly Detection and Long 
Short-Term Memory Neural Nets 

(LSTMs)
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Types of Anomalies

• Point

• Contextual

• Collective

(sequential)
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Anomaly Detection Survey

(cite)
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Disadvantages

Technique Family Disadvantages

Classification • acquiring labels (multi-class),
• complexity

Nearest Neighbor • misleading “neighborhoods” 
• choosing distance measure
• complexity

Clustering • difficulty of capturing cluster structure
• complexity
• distance measures
• anomalies can form clusters 

Statistical • distribution assumptions (parametric)
• lack of context (non-parametric, e.g. histograms) 

Spectral • High-computation complexity
• Anomalies must be seperable in low-dimensional 

space
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Point
Contextual ??
Collective ??
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Recurrent Neural Nets

• Parameter sharing

• Extend model to apply to different 
lengths and generalize across time 
steps

• Don’t have to have separate 
parameters for each time value

• Share statistical learning across 
time (pieces of information are 
often recurring)

• Recurrence

• Always has same input size 
regardless of sequence length
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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From RNNs to LSTMs (cite)
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RNN
LSTM

Core contribution (1997): Self-loops
Crucial addition (2000): Condition loop on context (with another hidden unit)
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Implementation and Proof of 
Concept
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Formulation
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Many inputs Single output

https://eng.uber.com/neural-networks/

Model

Single model
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Formulation
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Formulation
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Many inputs Many outputs

Model

Many models

Model

Model

Model

Why?
Granularity, control
Multi-dimensionality
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Setup
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…  65.3  66.4  63.9  74.1  75.3  72.9  65.7  66.1  66.4    …

…  66.4  63.9  74.1  75.3  72.9  65.7  66.1  66.2   ???  …

…    1        2        3        4        5        6        7        8        9       10    …Time window

Channel values
prediction

actual value

Recurrence

Errors     0.2     …

“Long Short Term Memory Networks 
for Anomaly Detection in Time Series”
• Maholtra, , et. al (2015)
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Reconstruction Errors and Smoothing
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Raw Reconstruction Error

Actuals and Prediction
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Reconstruction Errors and Smoothing
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Dynamic Anomaly Threshold
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Remove points above line:
• Large decrease in mean, std of errors
• Small amount of points removed

Anomaly threshold

Anomalous
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Dynamic Anomaly Threshold
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Remove points above line:
• Small decrease in mean, std of errors
• Large amount of points removed

Anomaly threshold

Nominal
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Experimentation – Incident Surprise, Anomaly Reports (ISAs)

• Scraped ISAs to find mentions of telemetry channels 
and times (~130)

• “Turn on” 2 days before each anomaly, run through 2 
days after

• Model trains on prior day, predicts current day
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Day of Anomaly(T)T-1T-2T-3 T+1 T+2

Train on T-3
re-train
on T-2

re-train 
on T-1 re-train on T

re-train 
on T+1

Predict T-2, 
remove 

anomalies

Model

Predict T-1, 
remove 

anomalies

Predict T, 
remove 

anomalies

Predict T+1, 
remove 

anomalies

Predict T+2
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Experimental Results
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Pre-
Anomaly

Day of 
Anomaly

Post-
Anomaly

Total

TP 26 65 40 131

FP 51 3 28 82

FN 3 8 6 17

Precision 34% 96% 59% 62%

Recall 90% 89% 87% 89%
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Incorporating Commands
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Time

Telemetry Channel

Command/Diagnostic Activity
Module, Type, Instrument, Description

[ [0.7] , 
[0.4] , 
[0.8] , 
[0.2] ]

[ [0.7, 0, 0, 1, 0] , 
[0.4, 0, 0, 0, 0] , 
[0.8, 1, 0, 0, 0] ,
[0.2, 0, 0, 0, 0] ]

xt =

xt =

Using prior values

Using prior values with commands



jpl.nasa.gov

Incorporating Commands
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As a System
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Processing (for each channel) 
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…

70 
mins

70 
mins

70 
mins

Predict 
pass

Predict 
pass

Predict 
pass

Prediction Errors

Prediction Errors

Prediction Errors

1. Predict new data and calculate 
errors across window

2. Smooth errors
3. Calculate threshold
4. Identify and log anomalies

Keep rolling window of prediction errors
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Architecture
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Rules of ML

Martin Zenkivich (http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf)

• “Most of the problems you will face are engineering problems. Even with all 
the resources of a great machine learning expert, most of the gains come from 
great features, not great machine learning algorithms. So, the basic approach is:

• 1. make sure your pipeline is solid end to end

• 2. start with a reasonable objective

• 3. add commonsense features in a simple way

• 4. make sure that your pipeline stays solid.

• This approach will make lots of money and/or make lots of people happy for a 
long period of time. Diverge from this approach only when there are no more 
simple tricks to get you any farther. Adding complexity slows future releases.”
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http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf
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Monitoring the Monitoring System
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Wrap-Up
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Lessons and Considerations

• Good foundation in place (ETL could have been a lot harder)

• Clear benefit

• Big jump from proof of concept to system

• Can’t have too many monitoring and debugging capabilities

• RNNs are really impressive, toolkits are getting better
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Future Work

• Interface

• See to believe

• Generalizability, portability, robustness 

• “Once you've exhausted the simple tricks, cuttingedge
machine learning might indeed be in your future.”

• Phased LSTMs

• Time between data points

• Streaming, real-time implementation

• Speed-ups: MXNet, compiled language processing

• Relationships

• Anomaly correlations
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